An elementary introduction to
Khovanov-Lipshitz-Sarkar stable homotopy type

Date:

Time:

2021 04 07

07:30 (GMT+0)

Speaker:

Eiji Ogasa

Moscow-Beijing Topology Semina

The title of my talk.
An elementary introduction to
Khovanov-Lipshitz-Sarkar stable homotopy type

Abstract
I will talk an elementary introduction to
Khovanov-Lipshitz-Sarkar stable homotopy type.

The graded cohomology of Khovanov-Lipshitz-Sarkar stable homotopy type for a link is Khovanov homology of the link. Khovanov-Lipshitz-Sarkar stable homotopy type is stronger than Khovanov homology as link invariants.

I will explain an outline of the idea of
Khovanov-Lipshitz-Sarkar stable homotopy type mainly.

Khovanov-Lipshitz-Sarkar stable homotopy type is generalized by Kauffman-Ogasa, and by
Kauffman-Nikonov-Ogasa.

Kauffman-Ogasa: Steenrod square for virtual links toward Khovanov-Lipshitz-Sarkar stable homotopy type for virtual links
arXiv:2001.07789[math.GT]

Kauffman-Nikonov-Ogasa: Khovanov-Lipshitz-Sarkar homotopy type for links in thickened higher genus surfaces arxiv2007.09241[math.GT]


PS
Kauffman-Ogasa introduced
Khovanov-Lipshits-Sarkar homotopy type for Manturov’s extension of Khovanov homology. Alternative definitions of Manturov’s one are written in Dye-Kaestner-Kauffman, and Nikonov.

Kauffman-Nikonov-Ogasa defined
Khovanov-Lipshits-Sarkar homotopy type for
Asaeda-Pryzy-Shikora’s generalization of Khovanov homology. Alternative definitions of Asaeda-Pryzy-Shikora’s one is made by
Manturov-Nikonov.

Meeting ID: 831 5020 0580
Password: 141592
Zoom link: https://zoom.com.cn/j/83150200580?pwd=Z3VaRzhreko1TUhnWnJXQ05mRHNrQT09

Time line

Chicago -8h

Moscow +0h

Beijing +5h

Seoul +6h

Tokyo +6h

Kim, Seongjeong,

e-mail :ksj19891120@gmail.com