An elementary introduction to
Khovanov-Lipshitz-Sarkar stable homotopy type
Date:
Time:
2021 04 07
07:30 (GMT+0)
Speaker:
Eiji Ogasa
Moscow-Beijing Topology Semina
The title of my talk.
An elementary introduction to
Khovanov-Lipshitz-Sarkar stable homotopy type
Abstract
I will talk an elementary introduction to
Khovanov-Lipshitz-Sarkar stable homotopy type.
The graded cohomology of Khovanov-Lipshitz-Sarkar stable homotopy type for a link is Khovanov homology of the link. Khovanov-Lipshitz-Sarkar stable homotopy type is stronger than Khovanov homology as link invariants.
I will explain an outline of the idea of
Khovanov-Lipshitz-Sarkar stable homotopy type mainly.
Khovanov-Lipshitz-Sarkar stable homotopy type is generalized by Kauffman-Ogasa, and by
Kauffman-Nikonov-Ogasa.
Kauffman-Ogasa: Steenrod square for virtual links toward Khovanov-Lipshitz-Sarkar stable homotopy type for virtual links
arXiv:2001.07789[math.GT]
Kauffman-Nikonov-Ogasa: Khovanov-Lipshitz-Sarkar homotopy type for links in thickened higher genus surfaces arxiv2007.09241[math.GT]
PS
Kauffman-Ogasa introduced
Khovanov-Lipshits-Sarkar homotopy type for Manturov’s extension of Khovanov homology. Alternative definitions of Manturov’s one are written in Dye-Kaestner-Kauffman, and Nikonov.
Kauffman-Nikonov-Ogasa defined
Khovanov-Lipshits-Sarkar homotopy type for
Asaeda-Pryzy-Shikora’s generalization of Khovanov homology. Alternative definitions of Asaeda-Pryzy-Shikora’s one is made by
Manturov-Nikonov.
Meeting ID: 831 5020 0580
Password: 141592
Zoom link: